SAMSUNG

Mobility 환경에 최적화된 삼성 Smart 무선랜

삼성전자

CONTENTS

무선랜 환경 및 시장

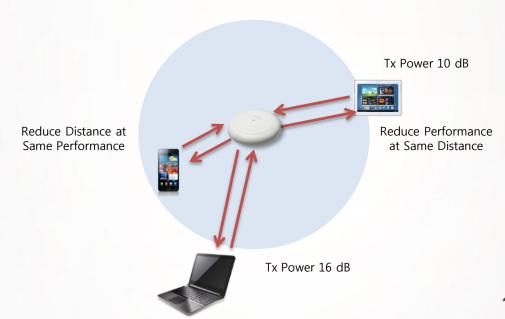
삼성 스마트 무선랜

삼성전자 모바일오피스 사 례

무선랜 환경 및 시장

무선랜 사용 Device 증가

- ✔ PC, 태블릿, 스마트폰에서 TV, 카메라, 오디오 등 가전기기로 확산
- ✔ 무선랜 접속 기기 수는 2014년 8.5억대 에서 2017년 17.6억대로 성장 전망


모바일 디바이스 중심 설계

✔ 최소 4배 많은 AP 설치 필요

- 모바일 디바이스의 TxPower가 다름
- 디바이스 최대성능 확보를 위해서 최소 4배 AP 증설 필요

무선 단말 특성

* 출처 : Gartner 2014

멀티미디어 사용 중심 설계

✔ 고성능 AP 도입 필요

- BYOD 도입에 따른 다양한 어플리케이션 사용
- 멀티미디어 사용 증대로 1인당 평균 사용 트래픽 최대 5Mbps

단말별 업무 용도

데스크탑, 노트 PC

모바일 디바이스

멀티미디어 사용 Traffic

화상회의 2~3 Mbps

비디오 스트리밍 3~5 Mbps

HD 동영상 3~6 Mbps

1인당 평균 사용 트래픽: 최대 5 Mbps

* 출처 : Gartner 2014

삼성 스마트 무선랜

AP 라인업

Cost

보안AP 멀티안테나, 전용 보안 모듈

일반AP

300Mbps

11n 2x2

WEA312i

450Mbps

802.11n

866Mbps

802.11ac

1.3Gbps

Performance

APC 및 WIPS 라인업

APC

WEC8500

최대 3,000 AP 지원 12 APC Clustering 2 * 10G + 8 * 1Gbps

WEC8050

최대 75 AP 지원 2 APC Clustering 4 * 1Gbps

NMS & WIPS

WEM

최대 6,000 AP, 12 APC 지원 VQM 등

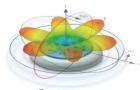
WES (WIPS)

최대 500 Sensor 지원 서버 이중화 통합형/단독형

삼성 무선랜 차별화 기술

Traffic Scheduling

Airtime Fairness를 구현하여 각 단말에 공평한 resource 분배 및 AP 성능 극대화


Seamless Handover

최적의 Handover 시간 및 대상을 컨트롤러가 결정하여 빠른 Handover 가능

Beam Selectable Antenna

Samsung

멀티안테나를 이용한 환경에 맞는 다양한 빔패턴 생성으로 성능 향상

Self Organizing Network

RF 환경 및 단말의 특성을 고려한 자동 셀 최적화

밀집 사용환경 증가

✔ AP당 동시 서비스 제공 Device 증가

AirEqualizer

- ✓ LTE에서 사용하는 스케줄러를 무선랜에 적용
- ✓ Airtime Fairness 방식
- ✓ 단말이 많은 High-density 환경에서 성능 보장
- ✓ 특히, 속도가 다른 단말이 혼합된 환경에서 성능 극대화 (특정 단말이 Resource를 독점하거나 할당 받지 못하는 현상 방지)

AirEqualizer와 기존 방식 비교

Resource 배분 방식

최적의 환경

Sticky Client 이슈

Airtime Fairness

다양한 속도의 단말이 혼재된 실제 환경

성능저하 최소화 (특정 단말이 리소스를 독점할 수 없음) VS Throughput Fairness

모든 단말이 동일한 속도로 VS 접속하는 이상적인 환경

급격한 성능 저하 VS (속도가 느린 단말로 인한 셀 전체의 성능이 영향을 받음)

High-density 환경 구축 예

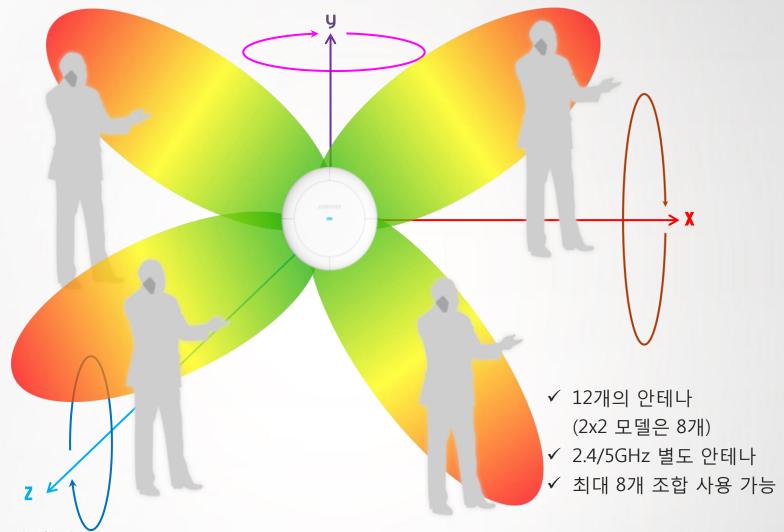
2014 ITU 전권회의

세계 정보통신기술 올림픽

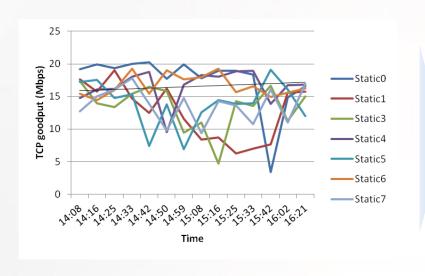
193개국, 3,000여명 참여 (80m x 110m x 27m)

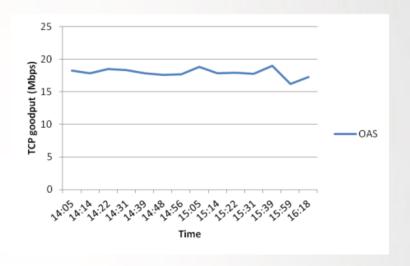
동시 5,000 devices 접속

전권회의 <mark>최초로</mark> Main 네트워크로 <mark>무선랜</mark> 채택


삼성전자 인력 개발원

국내 최대규모 스마트교육 연수원 대강의장(1,200명), 80여개 강의장, 260개 숙소 동시 1,200 devices 접속 스마트교육 & 스마트오피스, FMC

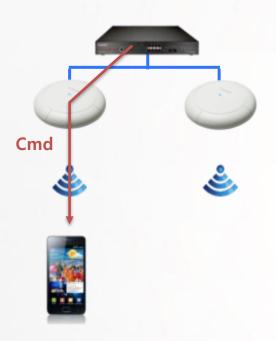

IBSA (Intelligent Beam Selectable Antenna)



IBSA의 개선 효과

✔ 안정적인 Throughput 제공 및 성능 최대 30% 향상

안테나 조합별 Throughput



IBSA 적용 전

IBSA 적용 후

AirMove

Network-controlled Handover

- LTE의 Network-controlled Handover 기술 적용
- Controller Station 주변 환경을 파악하고 언제, 어느 AP로 Handover 하는 것이 좋은지 판단하여 Station에게 Handover 명령을 내림.
- Station의 불필요한 채널 Scanning 시간 감소로 Handover 시 끊김을 최소화할 수 있음.

AirMove

Buffered Data Forwarding

- LTE의 Buffered Data Forwarding 기술 적용
- Station의 H/O로 인해 전송되지 못한 Data를 Target AP로 전달하여 H/O 완료 후 Station이 Data를 전송 받도록 함.
- Handover 시 Packet loss를 감소시켜 Data throughput을 증가시킬 수 있으며 VoIP의 경우 음 단절 현상을 감소시킴.

AirMove와 기존 WiFi 방식 비교

AirMove

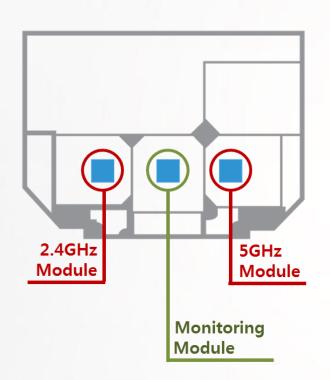
Target AP 설정

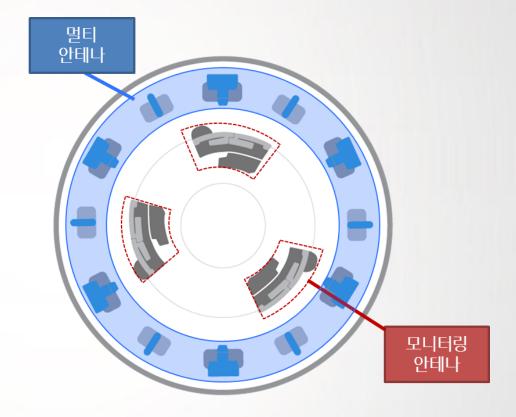
Controller가 신호세기, AP의 Load를 참고하여 AP 선택

VS Station이 신호가 좋은 임의의 AP 선택

Channel Scanning

스캐닝 횟수 최소화 스캐닝 시간 50% 이상 감소 VS 잦은 스캐닝과 긴 스캐닝 시간으로 끊김 현상 발생


Buffered Data Forwarding


지원 (Data, Voice 성능 ↑)

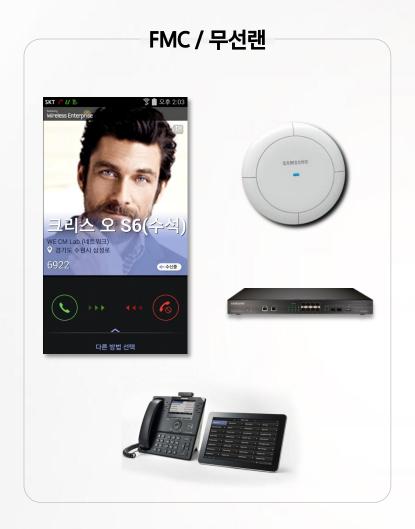
VS 미지원

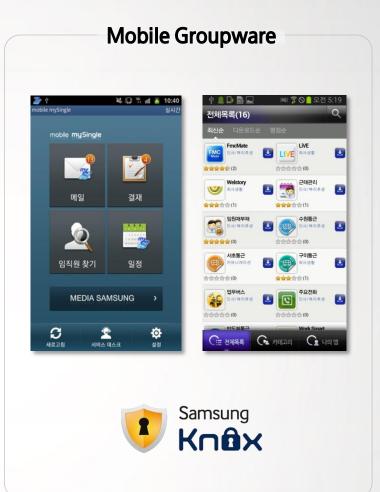
보안 AP - 전용 안테나 및 모듈

- ✔ 전용 WIPS 모듈을 통한 성능 저하 없는 보안 기능 제공
- ✔ 보안 모듈 전용 안테나 제공

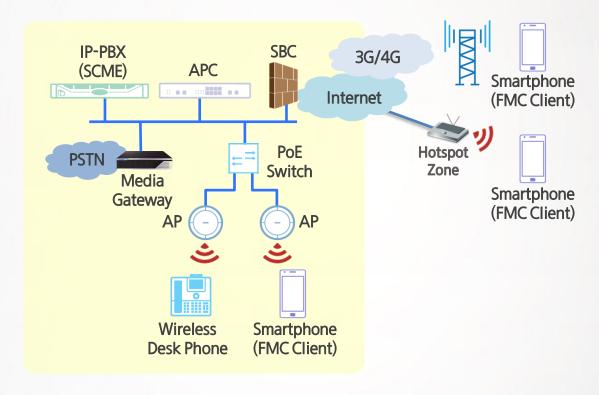
보안 AP - 탐지방식 비교

✔ 단독형 대비 낮은 투자비용으로 동등 이상 성능 제공

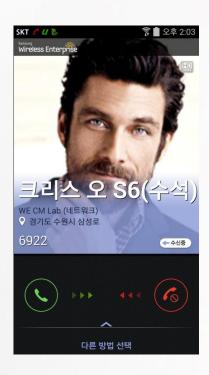

삼성전자 모바일오피스 사례



모바일오피스 기본 구성


주요 서비스

IPT 및 FMC 구성


- ✔ 삼성 WLAN / IPT 시스템 및 mVoIP를 위한 SBC 구성
- ✔ 사용자는 FMC Client 및 IP Phone 등을 선택 사용

FMC Client

✔ 3G 발신호를 내선호로 자동 전환하여 통신 요금 절감

▶ 주요 특징

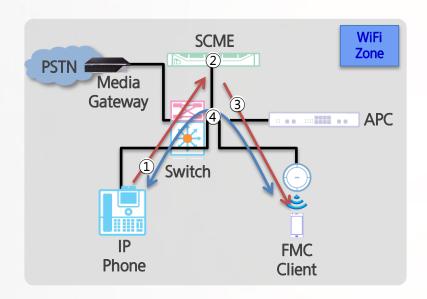
- 통합다이얼러
- mVoIP
- 트래픽 암호화 (TLS, sRTP)
- HD Voice
- 삼성 IP-PBX와 연계하여 다양한 Call 기능 제공
- Smart Handover (VCC) 기능 지원
- Google push server 연동

Wireless Deskphone

✔ WiFi 및 스마트디바이스 연동을 지원하는 Deskphone

▶ 주요 특징

- 다양한 인터페이스 지원 WiFi (2.4GHz, 5GHz), Bluetooth, NFC, USB, Gigabit Ethernet
- HD Voice 및 Full-duplex 스피커
- 화상 전화 지원
- 스마트디바이스 연동

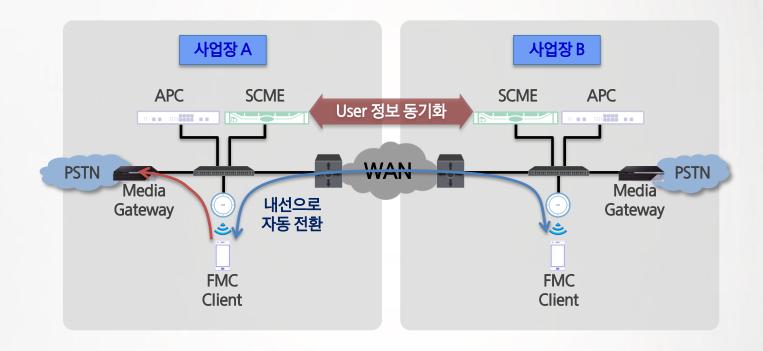


Smart Routing

✔ 3G 발신호를 내선호로 자동 전환하여 통신 요금 절감

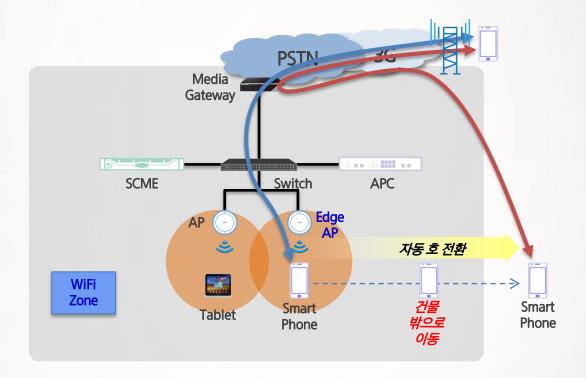
핸드폰 번호로 발신한 경우 IP-PBX가 착신자의 위치를 파악하여 내부에 있다면 내선번호로 자동 전환 → 불필요한 핸드폰 발신을 감소시켜 통신요금 절감

✔ 사내 one number 서비스 제공

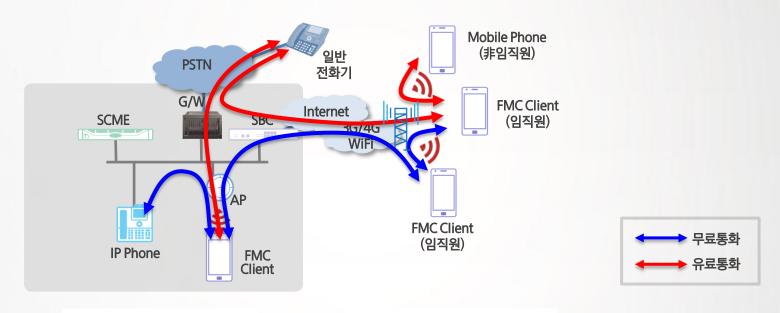

동작 Flow

- ① 핸드폰 번호로 VoIP 호 발신
- ② SCME(IP-PBX)는 핸드폰번호가 내선가입자의 번호인지, 내선가입자가 WiFi zone에 있는지 확인
- ③ 가입자가 WiFi zone에 있다면 호를 내선호로 전환 발신
- ④ 내선 무료 통화

Smart Routing


✔ IP PBX간 스마트 라우팅

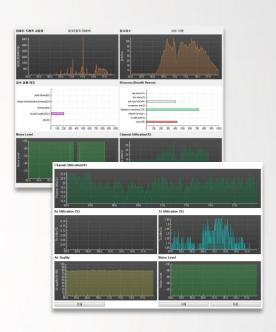
여러 사업장에 별도의 IP-PBX(SCME)가 설치된 경우에도 IP-PBX간 스마트라우팅 기능 제공


Smart Handover

- ✔ FMC 통화 중 건물 밖으로 이동 시 AP/APC가 신호세기 감소를 감지하여 호 전환 신호를 SCME(IP-PBX)에 전달 → 자동 3G 호전환
- ✔ RSSI 방식 및 Edge AP 방식 지원

mVoIP

- ✔ 사외 LTE/3G 망 및 WiFi zone에서 mVoIP 기능 지원
- ✔ 서비스 위치 별(사내, mVoIP, 사외 WiFi 존), 시간대 별 CoS 적용 가능



← 사내 (FMC 접속 구간) → ← 사외 (mVoIP 접속 구간) →

Samsung WiFi Tool

AirInsight

Network Inspector

AirStat

삼성의 선택 삼성 SMART 무선랜