
Security vulnerabilities
on OS X

SeungJin Lee (aka beist)
그레이해쉬 대표

http://grayhash.com

http://grayhash.com

About me

• SeungJin Lee (aka beist) - Interested in offensive security researcher

• beist@grayhash.com / http://twitter.com/beist

• Founder of Grayhash Inc (http://grayhash.com)

• Ms-Phd course at at Korea University (A member of SANE Lab, CIST: Professor. SeungJoo Kim)

• Wins at hacking competitions

• Running Codegate/Secuinside CTF

• Speaking at security conferences: BH Vegas, CANSECWEST, BREAKPOINT, SYSCAN, AVTOKYO,
HITCON, TROOPERS, EDSC, SECUINSIDE

• Tech advisor for SAMSUNG SDS Security Center

mailto:beist@grayhash.com
http://grayhash.com

About this talk

• Not a very technical talk

• Not a talk by OS X/iOS super l33ts like Stefan Esser

• But focused on how to approach find security vulnerabilities on OS X

• And some bugs could work on iOS too as the codebase

• Hobby research

• Could be useful for those who want to start research on Apple OS

• Will share my experience and demo some 0 days on the stage

About OS X

• It is called XNU and XNU is one of unix-like operating systems

• The core components can be divided

• Mach

• BSD

• libkern

• I/O Kit

Mach

• Developed at CMU originally

• To create a lightweight and efficient platform for OSes

• Process and thread abstractions

• Virtual memory management

• Task scheduling

• Interprocess communication and messaging

BSD

• There is the BSD layer on top of Mach

• Most important thing is it supports POSIX compatibility

• The UNIX Process Model/Thread model

• UNIX users and groups

• Network stack

• File system, device access

libkern

• libkern is C++ library

• To support C++ runtime

• Most drivers can be written in C++

IOKit

• Device driver framework

• Probably one of most interesting things in OS X/iOS for bug hunters

• For developers, it’s really convenient if they can code in C++

• Much more simplified and dev-time can be reduced

• For bug hunters, as making good code in C++ is hard,  
it can be their gold mine

The first step: find attack surfaces

• I used to have (maybe still) any idea on OS X/iOS

• Was thinking like “Oh, wow! C++ in kernel?”

• But if you do security research on a new platform, the first step to find
security bugs quickly, try to understand what attack surfaces are there

Attack surfaces

• I didn’t want to spend time on reading huge books, articles about OS X
to bug hunting since this is my hobby time done

• I was quickly looking at the OS

• All of operating systems have huge attack surfaces

• Think like Apache versus Windows

Attack surfaces

• Before figuring out attack surfaces, you should make sure yourself what
types of bugs you want to hunt

• Local privilege escalation

• IOKit, Mach/Posix system calls, Frameworks, DYLD

• Remote code execution

• Documentation, popular software, Web browsers

• RCE bug class is pretty much same as other OS

Bug classes

• Typical bug classes you can find

• Logical bugs

• Memory trespass

• Cryptography

• Authentication

• etc

• I was focusing on memory trespass and logical bugs

Attack surfaces

• Naive questions (Discussion time)

• Is there any network deamon run by ‘root’?

• How OS runs processes as ‘root’ when users request?

• How setuid binaries work?

• What’s the interface between kernel and user levels?

• Is there any chance if my bug works on both OS X and iOS?

• What bugs make huge impacts for normal users?

• What are the popular 3rd applications on our target OS?

Attack surfaces

• Let me pick up some questions and try to explain my experience

• Others will be covered later

• How setuid binaries works?

• I firstly googled it and realized DYLD is partly responsible on it

• (Not only for setuid binaries)

• Downloaded DYLD code from opensource.apple.com

http://opensource.apple.com

DYLD

• I was just browsing and reading code

• And some weird things have been found

bug #1

bug #2

DYLD bug #1

• Of course there is pruneEnvironmentVariables() function that deletes
every environment starting with DYLD_ (also LD_LIBRARY_PATH) but
previous code gets executed before it

• Using Bug 1, you can make an arbitrary file in any directory within ‘root’

• filename can be controlled too

• you can abuse this through the ‘sudo’ file check for sudo’ed users

DYLD bug #2

• In Bug 2, there is a sanity check unfortunately

• provided files must be ‘root’ owned files 
 
 
 
 
 
 
 
 
 

DYLD bug #2

• But, what if there is any single ‘root’ owned file but has o+w?

• Then you can provide any dyld file and the rest of DYLD code parses
your dyld file and jumps to the entry point

• This is 100% reliable, too 

$ ls -al /Library/Caches/com.apple.DiagnosticReporting.Networks.New.plist
-rw-rw-rw- 1 root admin 152 2 20 00:00 /Library/Caches/com.apple.DiagnosticReporting.Networks.New.plist

IOKit

• For these 2 questions

• What’s the interface between kernel and user levels?

• Definitely IOKit is the hacker’s choice

• Is there any chance if my bug works on both OS X and iOS?

• iOS has IOKit too

IOKit bug #3

• Found more than 5 bugs in IOKit and they’re exploitable

• How?: Downloaded the IOKit code again and found some points

• Bug #3 (Patched now) 
 
 
 
 
 
 
 
 

IOKit bug #3

• Apple gave me a credit on their website

• Could work on OSX, iOS, Apple TV 
 
 
 
 
 
 
 
 
 
 

IOKit bug #3

• You: “Wait a second, how do you map at NULL?”

• Me: “Thanks to Ian Beer.”

• https://code.google.com/p/google-security-research/issues/detail?id=20  
 
 
 
 
 
 

https://code.google.com/p/google-security-research/issues/detail?id=20

IOKit bug #4
• I was reporting Bug #3 to apple and they fixed it

• But I also knew there is the same pattern bug, if you scroll up (Bug #4)

• Still alive 
 
 
 
 
 
 
 
 
 

IOKit bug #5

• You can talk to your graphic driver through IOKit

• Intel3000, 4000, 5000 graphic drivers

• AppleIntelHD3000Graphics is available for 17’ Macbook

• Memory corruption bugs can be found easily

• For this, I wanted to fuzz to find bugs

IOKit bug #5

• There is an easy to fuzz on IOKit calls

• Hooking IOServiceMatching and IOConnectCallMethod

• Recording the service name and saving your mutated payload

• Putting DYLD_INSERT_LIBRARIES environment before executing a
target process

• But make sure that your target process calls those APIs

IOKit bug #5

• There is delete_texture_internal(IOIntelAccelerator *, IOGen575Shared*,
Gen575TextureBuffer *) function in the driver and you can partly
control the Gen575TextureBuffer

• You can control PC register and get LPE in kernel level

3rd parties problem

• To answer

• What are the popular 3rd applications on our target OS?

• Experts say most of 3rd parties software on OS X are not so secure

• I wanted to find some bugs in virtualization program

• I picked Parallels but not VMware

• Since I’m using Parallels and already found some bugs in VMware a
long time ago (Via io fuzzing)

3rd parties problem

• Parallels is a virtualization program that you can run Windows, Linux,
even OS X on OS X

• Bug type

• Local privilege escalation on Host OS (bug #6)

• Local privilege escalation on Guest OS (bug #7)

• VM jailbreak from unprivileged guest OS to host OS (bug #8)

3rd parties problem

• I’ve managed to find all of bug types quickly

• Tips:

• There are setuid binaries on Host OS

• https://beistlab.wordpress.com/2015/01/08/0day_race_condition_parallels_desktop/ (pw: gr4y)

• There are parallels drivers on Guest OS, too

• Target Linux Guest OS first since there are source code of drivers
(Easier to understand how they work)

https://beistlab.wordpress.com/2015/01/08/0day_race_condition_parallels_desktop/

Things not covered here

• POSIX/Mach system call auditing/fuzzing should be worth

• Frameworks are good targets

• https://truesecdev.wordpress.com/2015/04/09/hidden-backdoor-
api-to-root-privileges-in-apple-os-x/

• Filesystem bugs

• .DMG file can be loaded when users click (Massive attacks possible)

• Learn from published 0 days, they save your time!

https://truesecdev.wordpress.com/2015/04/09/hidden-backdoor-api-to-root-privileges-in-apple-os-x/

DEMO

• OS X LPE Demo on the latest version (bug #2)

• 100% reliable to get ‘root’

Conclusion

• People tend to think that Apple OS is more secure than Windows

• But it is not

• Hackers just spend more time on Windows and Linux than Apple OS

• Since they’re more popular and they can make more money

• We also should investigate Korean major software on OS X to figure out
how they are strong against attacks

Conclusion

• This talk was mainly about how to approach Apple OS to find bugs for
skilled hackers but no experience on it

• This could work on every new platforms

• However, this might be working for hobby Apple OS hackers but if you
want to be a serious jailbreaker, you should get much deeper like the
people in jailbreak scene

References

• Mac OS X and iOS Internals

• Countless Apple 0 days by Ian Beer

• Stenfan Esser’s awesome articles

• Find your own iOS Kernel bug by Chen Xiaobo and Xu Hao

Thank you!

• Question?

