Security vulnerabilities
on OS X

Seunglin Lee (aka beist)
J2|0|5H+| CHE
http://grayhash.com

http://grayhash.com

About me

Seunglin Lee (aka beist) - Interested in offensive security researcher
beist@grayhash.com / http://twitter.com/beist
Founder of Grayhash Inc (http://grayhash.com)
Ms-Phd course at at Korea University (A member of SANE Lab, CIST: Professor. SeungJoo Kim)
Wins at hacking competitions
Running Codegate/Secuinside CTF

Speaking at security conferences: BH Vegas, CANSECWEST, BREAKPOINT, SYSCAN, AVTOKYO,
HITCON, TROOPERS, EDSC, SECUINSIDE

Tech advisor for SAMSUNG SDS Security Center

mailto:beist@grayhash.com
http://grayhash.com

About this talk

Not a very technical talk
Not a talk by OS X/iOS super 133ts like Stefan Esser

But focused on how to approach find security vulnerabilities on OS X
And some bugs could work on iOS too as the codebase
Hobby research

Could be useful for those who want to start research on Apple OS

Will share my experience and demo some O days on the stage

About OS X

It is called XNU and XNU is one of unix-like operating systems
The core components can be divided

Mach

BSD

libkern

/0 Kit

Mach

Developed at CMU originally

To create a lightweight and efficient platform for OSes
Process and thread abstractions
Virtual memory management

Task scheduling

Interprocess communication and messaging

BSD

There is the BSD layer on top of Mach

Most important thing is it supports POSIX compatibility
The UNIX Process Model/Thread model
UNIX users and groups

Network stack

File system, device access

libkern

libkern is C++ library

- To support C++ runtime

Most drivers can be written in C++

|OKt

Device driver framework
Probably one of most interesting things in OS X/iOS for bug hunters
For developers, it’s really convenient if they can code in C++

Much more simplified and dev-time can be reduced

For bug hunters, as making good code in C++ is hard,
it can be their gold mine

The first step: find attack surfaces

| used to have (maybe still) any idea on OS X/iOS
- Was thinking like "Oh, wow! C++ in kernel?”

But if you do security research on a new platform, the first step to find
security bugs quickly, try to understand what attack surfaces are there

Attack surfaces

| didn't want to spend time on reading huge books, articles about OS X
to bug hunting since this is my hobby time done

| was quickly looking at the OS

All of operating systems have huge attack surfaces

Think like Apache versus Windows

Attack surfaces

Before figuring out attack surfaces, you should make sure yourself what
types of bugs you want to hunt

Local privilege escalation

|OKit, Mach/Posix system calls, Frameworks, DYLD
Remote code execution

Documentation, popular software, Web browsers

RCE bug class is pretty much same as other OS

Bug classes

Typical bug classes you can find
Logical bugs
Memory trespass
Cryptography
Authentication
etc

| was focusing on memory trespass and logical bugs

Attack surfaces

Naive questions (Discussion time)
Is there any network deamon run by ‘root’?
How OS runs processes as root’ when users request?
How setuid binaries work?
What's the interface between kernel and user levels?
Is there any chance if my bug works on both OS X and iOS?
What bugs make huge impacts for normal users?

What are the popular 3rd applications on our target OS?

Attack surfaces

Let me pick up some questions and try to explain my experience
Others will be covered later

How setuid binaries works?
| firstly googled it and realized DYLD is partly responsible on it
(Not only for setuid binaries)

Downloaded DYLD code from opensource.apple.com

http://opensource.apple.com

DYLD

| was just browsing and reading code

And some weird things have been found

uintptr_t
_main(const macho_headerx mainExecutableMH, uintptr_t mainExecutableSlide,

int argc, const charx argv[], const charx envp[], const charx applel],
uintptr_t* startGlue)

uintptr_t result = @;
sMainExecutableMachHeader = mainExecutableMH;
#if !TARGET_IPHONE_SIMULATOR bUg #1
const charx loggingPath = _simple_getenv(envp, "DYLD_PRINT_TO_FILE");
if (loggingPath != NULL) {
int fd = open(loggingPath, O_WRONLY | O_CREAT | O_APPEND, 0644);
if (fd !'= -1) {
sLogfile = fd;
sLogToFile = true;

}

else {

dyld::log("dyld: could not open DYLD_PRINT_TO_FILE='%s', errno=%d\n", loggingPath, errno);
}

}
#endif
#if _ MAC_0S_X VERSION_MIN_REQUIRED
// if this is host dyld, check to see if i0S simulator is being run
const charx rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
if (rootPath != NULL) { bUg #2
// look to see if simulator has its own dyld
char simDyldPath [PATH_MAX] ;
strlcpy(simDyldPath, rootPath, PATH_MAX);
strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
int fd = my_open(simDyldPath, O_RDONLY, 0);
if (fd !'= -1) {
result = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue);
if (!'result && (*startGlue == 0))

halt("problem loading i0S simulator dyld");
return result;

}
#endif|

DYLD bug #1

Of course there is pruneEnvironmentVariables() function that deletes
every environment starting with DYLD_ (also LD_LIBRARY_PATH) but
previous code gets executed before it

Using Bug 1, you can make an arbitrary file in any directory within ‘root’

filename can be controlled too

you can abuse this through the ‘sudo’ file check for sudo’ed users

DYLD bug #2

- In Bug 2, there is a sanity check unfortunately

- provided files must be ‘root’ owned files

__attribute__ ((noinline))

static uintptr_t useSimulatorDyld(int fd, const macho_headerx mainExecutableMH,

const charx dyldPath, int argc, const charx argv(],

const charx envpl[], const charx apple[], uintptr_t* startGlue)

xstartGlue = 0;

// verify simulator dyld file is owned by root
struct stat sb;
if (fstat(fd, &sb) == -1)
return 9;
if (sb.st uid != 0)
return 9;

DYLD bug #2

But, what if there is any single root’ owned file but has o+w?

$ Is -al /Library/Caches/com.apple.DiagnosticReporting.Networks.New.plist
-rw-rw-rw- 1root admin 152 2 20 00:00 /Library/Caches/com.apple.DiagnosticReporting.Networks.New.plist

Then you can provide any dyld file and the rest of DYLD code parses
your dyld file and jumps to the entry point

This is 100% reliable, too

|OKt

For these 2 questions
What's the interface between kernel and user levels?
Definitely I0Kit is the hacker’s choice
Is there any chance if my bug works on both OS X and i0S?

I0S has I10Kit too

|OKit bug #3

- Found more than 5 bugs in IOKit and they're exploitable
- How?: Downloaded the I0OKit code again and found some points

- Bug #3 (Patched now)

IOHIDEventQueue * IOHIDEventQueue::withEntries(UInt32 numEntries,
UInt32 entrySize)

{

IOHIDEventQueue * queue = new IOHIDEventQueue;

if (queue && !queue->initWithEntries(numEntries, entrySize))

{

queue->release();

queue = 0;
}
queue->_state = 0;
queue->_lock = IOLockAlloc();
gueue-> numEntries = numEntries;

gueue->_currentEntrySize
gqueue-> maxEntrySize

DEFAULT HID ENTRY SIZE;
DEFAULT HID ENTRY SIZE;

return queue;

|OKit bug #3

- Apple gave me a credit on their website

- Could work on OSX, iOS, Apple TV

* |OHIDFamily
Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5, OS X Yosemite v10.10 and v10.10.1
Impact: A malicious application may be able to execute arbitrary code with system privileges

Description: A null pointer dereference existed in IOHIDFamily's handling of event queues. This issue
was addressed through improved validation of IOHIDFamily event queue initialization.

CVE-ID

CVE-2014-4489 : @peist

|OKit bug #3

- You: “Wait a second, how do you map at NULL?”

. Me: “Thanks to lan Beer.”

https://code.google.com/p/google-security-research/issues/detail?id=20

*hkkrhkhhkhkikkhdkdkhkik

mach loader.c
load segment(

boolean t prohibit pagezero mapping = FALSE;

/* XXX (4596982) this interferes with Rosetta, so limit to 64-bit tasks */
if (scp->cmd == LC SEGMENT 64) ({

prohibit pagezero mapping = TRUE;
}

if (prohibit pagezero mapping) {

ret = vm map raise min offset(map, seg size); //only place this is called

https://code.google.com/p/google-security-research/issues/detail?id=20

|OKit bug #4

- | was reporting Bug #3 to apple and they fixed it

- But | also knew there is the same pattern bug, if you scroll up (Bug #4)

- Still alive
IOHIDEventQueue * IOHIDEventQueue::withCapacity(UInt32 size)
{
IOHIDEventQueue * queue = new IOHIDEventQueue;
if (queue && !queue->initWithCapacity(size))
{
queue->release();
queue = 0;
}
queue->_ state = 0;
queue->_ lock = IOLockAlloc();
queue-> numEntries = size / DEFAULT HID ENTRY SIZE;
queue-> currentEntrySize = DEFAULT HID ENTRY SIZE;
queue-> maxEntrySize = DEFAULT HID ENTRY SIZE;
return queue;
}
IOHIDEventQueue * IOHIDEventQueue::withEntries(UInt32 numEntries,
UInt32 entrySize)
{

|OKit bug #5

- You can talk to your graphic driver through I0Kit

Intel3000, 4000, 5000 graphic drivers

ApplelntelHD3000Graphics is available for 17 Macbook

Memory corruption bugs can be found easily

For this, | wanted to fuzz to find bugs

|OKit bug #5

There is an easy to fuzz on IOKit calls
Hooking 10ServiceMatching and I0ConnectCallMethod
Recording the service name and saving your mutated payload

Putting DYLD_INSERT_LIBRARIES environment before executing a
target process

But make sure that your target process calls those APIs

|OKit bug #5

There is delete_texture_internal(lOIntelAccelerator * 10Gen575Shared*,
Gen575TextureBuffer *) function in the driver and you can partly
control the Gen575TextureBuffer

You can control PC register and get LPE in kernel level

3rd parties problem

To answer

What are the popular 3rd applications on our target OS?
Experts say most of 3rd parties software on OS X are not so secure
| wanted to find some bugs in virtualization program

| picked Parallels but not VMware

Since I'm using Parallels and already found some bugs in VMware a
long time ago (Via io fuzzing)

3rd parties problem

Parallels is a virtualization program that you can run Windows, Linux,
even OS X on OS X

Bug type
Local privilege escalation on Host OS (bug #6)
Local privilege escalation on Guest OS (bug #7)

VM jailbreak from unprivileged guest OS to host OS (bug #8)

3rd parties problem

I've managed to find all of bug types quickly
Tips:
There are setuid binaries on Host OS

https://beistlab.wordpress.com/2015/01/08/0day_race_condition_parallels_desktop/ (pw: gr4y)

There are parallels drivers on Guest OS, too

Target Linux Guest OS first since there are source code of drivers
(Easier to understand how they work)

https://beistlab.wordpress.com/2015/01/08/0day_race_condition_parallels_desktop/

Things not covered here

POSIX/Mach system call auditing/fuzzing should be worth
Frameworks are good targets

https://truesecdev.wordpress.com/2015/04/09/hidden-backdoor-
api-to-root-privileges-in-apple-os-x/

Filesystem bugs
.DMG file can be loaded when users click (Massive attacks possible)

Learn from published O days, they save your time!

https://truesecdev.wordpress.com/2015/04/09/hidden-backdoor-api-to-root-privileges-in-apple-os-x/

DEMO

OS X LPE Demo on the latest version (bug #2)

100% reliable to get ‘root’

Conclusion

People tend to think that Apple OS is more secure than Windows
But it Is not

Hackers just spend more time on Windows and Linux than Apple OS
Since they're more popular and they can make more money

We also should investigate Korean major software on OS X to figure out
how they are strong against attacks

Conclusion

This talk was mainly about how to approach Apple OS to find bugs for
skilled hackers but no experience on it

This could work on every new platforms

However, this might be working for hobby Apple OS hackers but if you
want to be a serious jailbreaker, you should get much deeper like the
people in jailbreak scene

References

Mac OS X and iOS Internals
Countless Apple O days by lan Beer
Stenfan Esser’'s awesome articles

Find your own iOS Kernel bug by Chen Xiaobo and Xu Hao

Thank youl!

- Question?

