

AI/ML 을 위한 시스코 데이터 센터 솔루션 - Edge to Multi Cloud

시스코 시스템즈 Datacenter PSS 정 연구 수석 2018.11.08

The Data Explosion Is Real

277X Data created by IoT devices vs. end users

40%

Of all data will come from sensor data by 2020

30M

New devices connected every week

5TB+

Of data per person by 2020

180B

Mobile apps downloaded in 2015

4.2B

Web filtering blocks per day

Al activates the potential of raw data into powerful competitive advantage

- 277X data created by IoE devices vs. end users source: 2014 Cisco® Global Cloud Index
- By 2020, there will be 5200 GB of data for every person on earth source: 2012 Digital Universe Study conducted by IDC and sponsored by EMC
- (see: http://www.computerworld.com/article/2493701/data-center/by-2020--there-will-be-5-200-gb-of-data-for-every-person-on-earth.html)
- 180 billion mobile app downloads by 2015 source: 2011 IDC Study: https://www.smaato.com/blog-180billiondownloads/

How Important is AI & ML?

By 2020, insights-driven businesses will steal

\$1.2T

per annum from their less-informed peers

8 out of 10

businesses have already implemented or are planning to adopt AI as a customer service solution by 2020 By 2035, Al technologies are projected to increase business productivity by up to

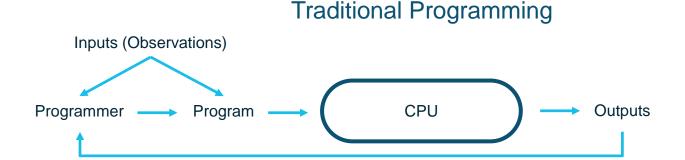
40%

\$1.2T https://go.forrester.com/wp-content/uploads/Forrester_Predictions_2017_-Artificial_Intelligence_Will_Drive_The_Insights_Revolution.pdf

8 out of 10 - Oracle - https://www.oracle.com/webfolder/s/delivery_production/docs/FY16h1/doc35/CXResearchVirtualExperiences.pdf

· Accenture https://www.accenture.com/us-en/insight-artificial-intelligence-future-growth

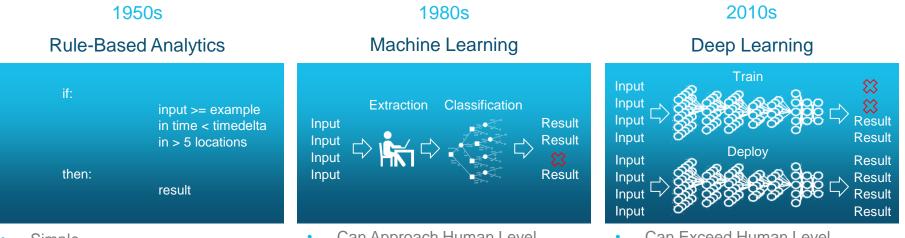
What is Al



Machines Making Decisions

Machines that Learn and Make Decisions without Explicit Programming Machines that Use Artificial Neural Networks to Learn and Make Decisions with Complex Data

Data is the Source Code


Machine Learning and Deep Learning

Source: Sebastian Raschka - https://www.kdnuggets.com/2016/05/explain-machine-learning-software-engineer.html

Evolution of AI Algorithms

• Simple

iliilii cisco

- Low Accuracy
- High Rate of False Positives
- Only Applicable to Simple Data
- Ineffective on Big Data

- Can Approach Human Level Accuracy
- Requires Expert Feature Extraction Engineering
- Requires Moderate Volume of Data for "Learning"
- Good for Moderate Variety of Data

- Can Exceed Human Level Accuracy
- Automatic Feature Extraction
- Requires Massive Amounts of Data and Compute Power
- Good for Big Data and IoT Data
- Learning Like a Human and Executing at Computer Speed

Custom AI Deep Learning Workflow

Deep Learning is Now Widely Practical

Lots of Data

Powerful Hardware

iliilii cisco

ImageNet Challenge

2012 – 74% Accuracy - Non-ANN

2012 – 85% Accuracy - AlexNet

2015 – 97% Accuracy - Deep Learning

Use Cases

Libraries and Tools

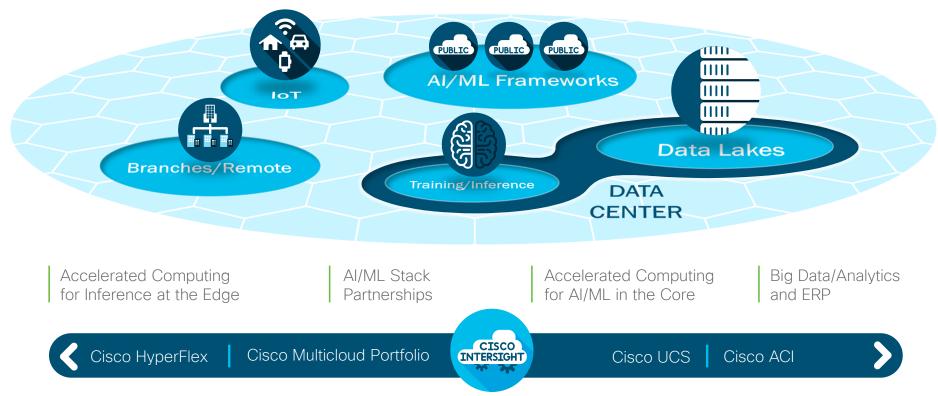
Business Drives Al

			Ŧ		\bigcirc		(\mathbf{O})
Business Question	Expert Al Task	Finance	Healthcare	Media and Entertainment	Security and Defense	Retail	Manufacturing
Is "it" present or not?	Detection	Identify Access Anomalies	Indications of Anomalous Care	Content Based Search	Identify Security Breaches	Identify Events in Store Surveillance	Detect Manufacturing Flaws
What type of thing is "it"?	Classification	Fraud detection	Medical Imagery Diagnostics	Content Labeling	Facial Recognition	Identify Returning vs New Shoppers	Enable Robots to Track Objects
To what extent is "it" present?	Segmentation	Sentiment Analysis	Condition Analysis	Improved Product Placement	Crowd Analytics	Segment by Customers Actions	Sort Components by Quality
What is the interpretation?	Natural Language Processing	Chatbot Advisors	Expert Diagnosis from Notes	Video Captioning	Real Time Language Translation	In Store Personal Assistants	Assembly Build Instruction Translation
What is the likely outcome?	Prediction	Credit Profiling	Length of Stay Forecasting	Targeted Content Generation	Equipment Health Assessment	Customer Churn and Retention	Proactive Machine Maintenance
What will satisfy the objective?	Recommendations	Algorithmic Trading	Treatment Recommendations	Effective Content Recommendations	Risk Management	"Magic Mirror"	Assembly Process Improvements
	Recommendations	U U			Risk Management	"Magic Mirror"	

Key IT AI Challenges

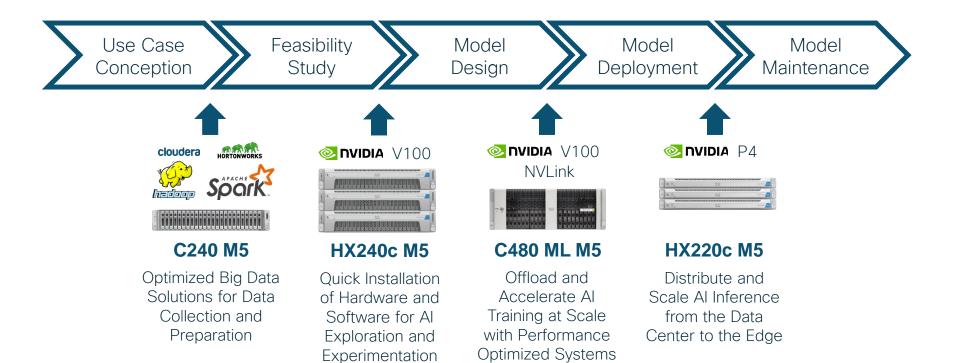
The Data Center Follows the Data

Distributed Data Sources and Technologies Risk Operational Silos and Complexity


© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Uncharted Territory

Massive & Active Data Sets


Rapidly Evolving AI/ML Ecosystem and Requirements; Skill Shortages in Data Science and IT Volume, Velocity, and Variability of Al Workloads at Scale Demand New Data Center Architectures

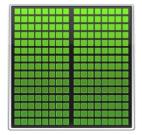
Cisco AI/ML/DL: A Holistic Approach

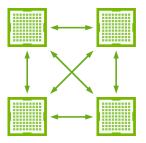
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Cisco Portfolio Alignment

AI Hardware Components High Level

Artificial Neural Network 1,000s of Parallel Processing Elements Assembled to Identify Complex Patterns in High Variety Data with


Superhuman Accuracy


Xeon CPU 10s of Sequential Serial Processing Cores Ideal for Data Preparation and Management

Tesla GPU 1,000s of Parallel Processing Cores Ideal for Deep Learning Mathematical Functions

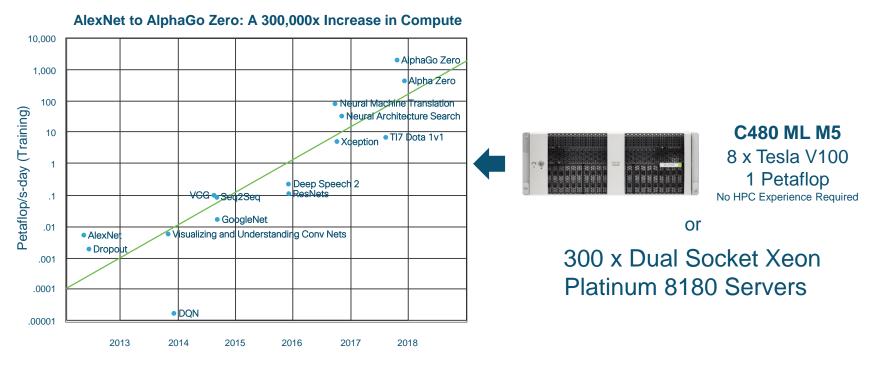
NVLink GPU Interconnect for Maximum Scalability and up to 10x the Bandwidth of PCIe to Support the Training of Modern Neural Networks

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia

Cisco UCS C480 ML Rack Server

No-compromise balance of performance and capacity to power AI workloads at scale

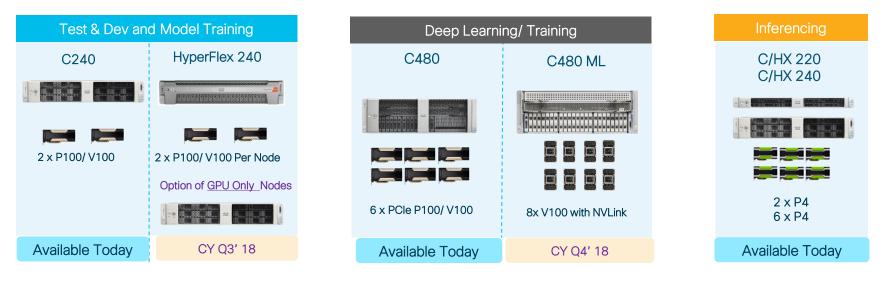
Fully Integrated Platform Designed to Accelerate Deep Learning


- Eight NVIDIA Tesla V100s with NVIDIA NVLink Interconnect
- Up to 24 Drives; 182TB

- Up to 6 NVMe Drives
- Network: Up to 4x100GB
- High Availability Design

Validated with Popular Machine Learning Software to Accelerate and Simplify AI/ML Projects on Premise

Prevents Operation Silos: Extends Existing UCS Environments with Consistent, Cloud-Based Management


Why GPUs and NVLink Matter

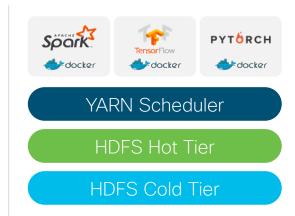
Source: https://www.top500.org/news/intel-forges-new-xeon-line-under-scalable-processor-banner/ https://blog.openai.com/ai-and-compute/

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia

UCS AI/ML/DL Compute Portfolio

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Data Centric Approach: Expanding to AI/ML/DL Cisco Validated Designs

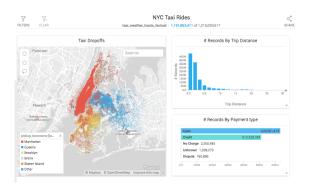


Kubeflow

Portable, Scalable ML Stack Enabling Rapid Development and Deployment

Cloudera Data Science Work Bench

Hadoop Coupled with GPU Nodes for Deep Learning with Jupyter Notebook


Hortonworks Hadoop 3.1 Data Lake

Integrate Hadoop and AI/ML: YARN Scheduling CPU and GPU with Docker Application Support

Analytical Solutions with GPU Acceleration

NEW

MAPD

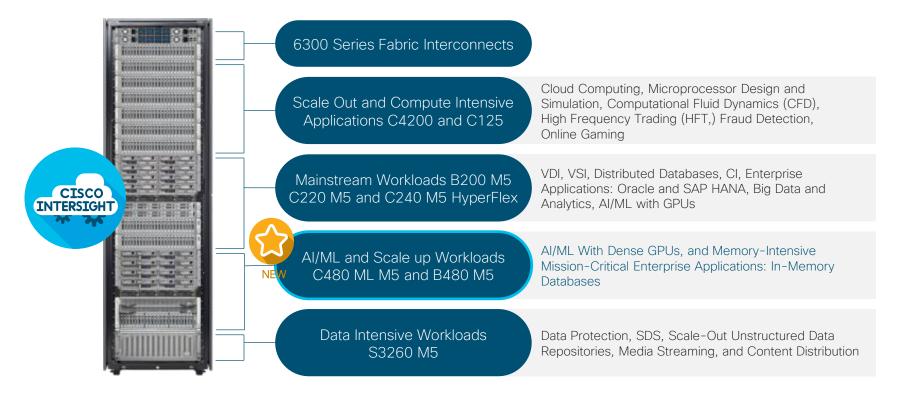
Interactive data analytics at scale

111111

CISCO

Server Same Table Title Server Same Control

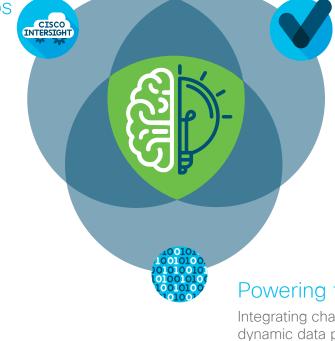
ki∩≣tica


Cisco UCS, NVIDIA, and Kinetica

GPU Accelerated Databases

Cisco UCS Solution for SAS Viya with Hadoop

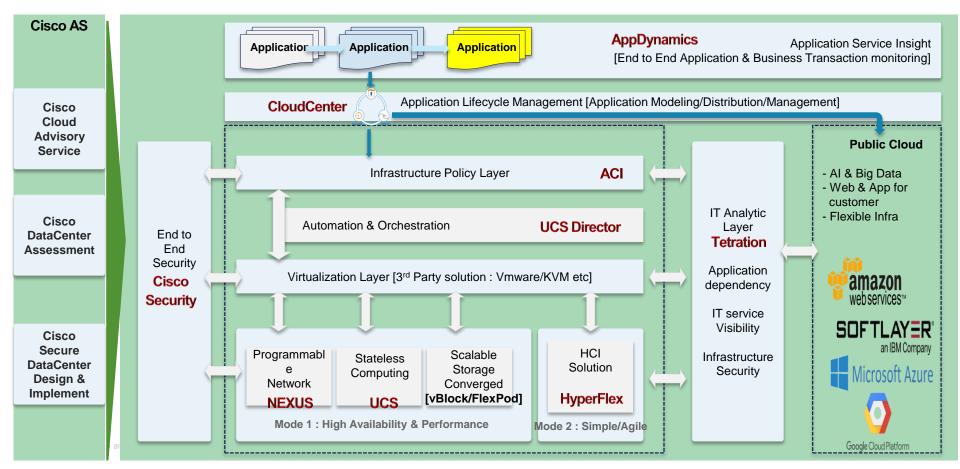
© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Confidential


UCS: One System for All Workloads

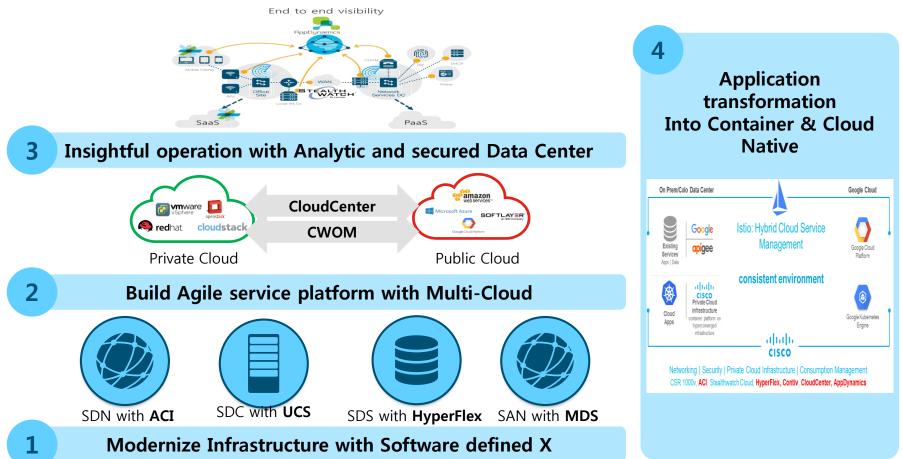
Why Cisco Computing Solutions for Al

Eliminating Operational Silos

Full array of accelerated computing options for test/dev, training and inference, all unified by cloud-based management


Demystifying AI/ML/DL Stacks

Curating top-to-bottom SW and HW stacks with leading ecosystem partners to ensure a faster and more predictable deployment


Powering the Full Al Data Lifecycle

Integrating changing data sources as part of a dynamic data pipeline

Cisco multi Cloud frame work for Data Center Transformation

Data Center Transformation to Multi cloud

THANK YOU

ıılıılı cısco.